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Abstract. It is known that the high-energy quark-quark scattering amplitude can be described by the
expectation value of two lightlike Wilson lines, running along the classical trajectories of the two colliding
particles. Generalizing the results of a previous paper, we give here the general proof that the expectation
value of two infinite Wilson lines, forming a certain hyperbolic angle in Minkowski space-time, and the
expectation value of two infinite Euclidean Wilson lines, forming a certain angle in Euclidean four-space,
are connected by an analytic continuation in the angular variables. This result could be used to evaluate
the high-energy scattering amplitude directly on the lattice.

1 Introduction

It is well known that the quark-quark scattering ampli-
tude, at high squared energies s in the center of mass and
small squared transferred momentum t (that is s → ∞
and |t| � s, let us say |t| ≤ 1 GeV2), can be described by
the expectation value of two lightlike Wilson lines, run-
ning along the classical trajectories of the two colliding
particles [1], [2].

In the center-of-mass reference system (c.m.s.), tak-
ing for example the initial trajectories of the two quarks
along the x1-axis, the scattering amplitude has the follow-
ing form [explicitly indicating the color indices (i, j, . . .)
and the spin indices (α, β, . . .) of the quarks]

Mfi = 〈ψiα(p′
1)ψkγ(p

′
2)|M |ψjβ(p1)ψlδ(p2)〉

∼
s→∞ − i

Z2
ψ

· δαβδγδ · 2s (1.1)

×
∫
d2zteiq·zt〈[W1(zt) − 1]ij [W2(0) − 1]kl〉 ,

where q = (0, 0,q), with t = q2 = −q2, is the tranferred
four-momentum and zt = (0, 0, zt), with zt = (z2, z3),
is the distance between the two trajectories in the trans-
verse plane [the coordinates (x0, x1) are often called longi-
tudinal coordinates]. The expectation value 〈f(A)〉 is the
average of f(A) in the sense of the functional integra-
tion over the gluon field Aµ (including also the determi-
nant of the fermion matrix, i.e., det[iγµDµ − m], where
Dµ = ∂µ + igAµ is the covariant derivative) [1], [2]. The
two lightlike Wilson lines W1(zt) and W2(0) in (1.1) are
defined as

W1(zt) = P exp
[
−ig

∫ +∞

−∞
Aµ(zt + p1τ)p

µ
1dτ

]
;
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Fig. 1. The space-time configuration of the two lightlike
Wilson lines W1 and W2 entering in the expression (1.1) for
the high-energy quark-quark elastic scattering amplitude

W2(0) = P exp
[
−ig

∫ +∞

−∞
Aµ(p2τ)p

µ
2dτ

]
, (1.2)

where P stands for “path ordering” and Aµ = AaµT
a;

p1 ' (E,E,0t) and p2 ' (E,−E,0t) are the initial four-
momenta of the two quarks. The space-time configuration
of these two Wilson lines is shown in Fig. 1.

Finally, Zψ in (1.1) is the fermion-field renormalization
constant, which can be written in the eikonal approxima-
tion as [1]

Zψ ' 1
Nc

〈Tr[W1(zt)]〉 =
1
Nc

〈Tr[W1(0)]〉

=
1
Nc

〈Tr[W2(0)]〉 , (1.3)

where Nc is the number of colours.
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In what follows, we shall deal with the quantity

gM(ij,kl)(s; t) (1.4)

≡ 1
Z2
ψ

∫
d2zteiq·zt〈[W1(zt) − 1]ij [W2(0) − 1]kl〉 ,

in terms of which the scattering amplitude can be written
as

Mfi = 〈ψiα(p′
1)ψkγ(p

′
2)|M |ψjβ(p1)ψlδ(p2)〉

∼
s→∞ −i · 2s · δαβδγδ · gM(ij,kl)(s; t) . (1.5)

The quantity gM(ij,kl)(s; t) depends not only on t = −q2,
but also on s. In fact, as was pointed out by Verlinde and
Verlinde in [3], it is a singular limit to take the Wilson
lines in (1.4) exactly lightlike. A way to regularize this
sort of “infrared” divergence (so called because it essen-
tially comes from the limit m → 0, where m is the quark
mass) consists in letting each line have a small timelike
component, so that they coincide with the classical tra-
jectories for quarks with a finite mass m (see also [4] for a
discussion about this point). In other words, one first eval-
uates the quantity gM(ij,kl)(β; t) for two Wilson lines along
the trajectories of two quarks (with mass m) moving with
velocity β and −β (0 < β < 1) in the x1-direction. This
is equivalent to consider two infinite Wilson lines forming
a certain (finite) hyperbolic angle χ in Minkowski space-
time. Then, to obtain the correct high-energy scattering
amplitude, one has to perform the limit β → 1, that is
χ → ∞, in the expression for gM(ij,kl)(β; t):

Mfi = 〈ψiα(p′
1)ψkγ(p

′
2)|M |ψjβ(p1)ψlδ(p2)〉

∼
s→∞ −i · 2s · δαβδγδ · gM(ij,kl)(β → 1; t) . (1.6)

Proceeding in this way one obtains a ln s dependence of
the amplitude, as expected from ordinary perturbation
theory and as confirmed by the experiments on hadron-
hadron scattering processes [5], [6]. In Sect. 3 of [4] we have
followed this procedure to explicitly evaluate the second
member of (1.6) up to the fourth order in the expansion
in the renormalized coupling constant: the results so de-
rived are in agreement with those obtained from ordinary
perturbation theory.

The direct evaluation of the expectation value (1.4) is a
highly non-trivial matter and it is strictly connected with
the ultraviolet properties of Wilson-line operators [7], [8].
Some non-perturbative approaches for the calculation of
(1.4) have been proposed in [9] and [10].

In a recent paper [4] we have proposed a new approach,
which consists in adapting the scattering amplitude to the
Euclidean world: this approach could open the way for
the direct evaluation of the scattering amplitude on the
lattice. More explicitly, in [4] we have given arguments
showing that the expectation value of two infinite Wil-
son lines, forming a certain hyperbolic angle in Minkowski
space-time, and the expectation value of two infinite Eu-
clidean Wilson lines, forming a certain angle in Euclidean
four-space, are likely to be connected by an analytic con-
tinuation in the angular variables. This relation of ana-
lytic continuation has been proven in [4] for an Abelian

gauge theory (QED) in the so-called quenched approxi-
mation and for a non-Abelian gauge theory (QCD) up to
the fourth order in the renormalized coupling constant in
perturbation theory: a general proof was missing up to
now.

In this paper, we shall generalize the results of [4] and
give the rigorous proof of the above-mentioned relation
of analytic continuation for a non-Abelian gauge theory
with gauge group SU(Nc) [as well as for an Abelian gauge
theory (QED)]. The approach adopted in [4] consisted in
explicitly evaluating the amplitudes gM (χ; t) and gE(θ; t),
in the Minkowski and the Euclidean world, in some given
approximation (such as the quenched approximation) or
up to some order in perturbation theory and in finally
comparing the two expressions so obtained. Instead, in
this paper we shall give a general proof, which essentially
exploits the relation between the gluonic Green functions
in the two theories.

2 From Minkowskian to Euclidean theory

Let us consider the following quantity, defined in Minkow-
ski space-time:

gM (p1, p2; t) =
M(p1, p2; t)

Z2
W

, (2.1)

M(p1, p2; t) =
∫
d2zteiq·zt〈[W1(zt) − 1]ij [W2(0) − 1]kl〉 ,

where p1 and p2 are the four-momenta [lying (for example)
in the plane (x0, x1)], which define the trajectories of the
two Wilson lines W1 and W2 (Aµ = AaµT

a and m is the
fermion mass):

W1(zt) ≡ P exp
[
−ig

∫ +∞

−∞
Aµ(zt +

p1

m
τ)
pµ1
m
dτ

]
;

W2(0) ≡ P exp
[
−ig

∫ +∞

−∞
Aµ(

p2

m
τ)
pµ2
m
dτ

]
. (2.2)

ZW in (2.1) is defined as (Nc being the number of colours)

ZW ≡ 1
Nc

〈Tr[W1(zt)]〉 =
1
Nc

〈Tr[W1(0)]〉

=
1
Nc

〈Tr[W2(0)]〉 . (2.3)

(The two last equalities come from the Poincaré invari-
ance.) This is a sort of Wilson-line’s renormalization con-
stant: as shown in [1], ZW coincides with the fermion
renormalization constant Zψ in the eikonal approxima-
tion.

By virtue of the Lorentz symmetry, we can define p1
and p2 in the c.m.s. of the two particles, moving with speed
β and −β along the x1-direction:

pµ1 = E(1, β,0t) ,
pµ2 = E(1,−β,0t) , (2.4)
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where E = m/
√

1 − β2 (in units with c = 1) is the energy
of each particle (so that: s = 4E2).

We now introduce the hyperbolic angle ψ [in the plane
(x0, x1)] of the trajectory of W1: it is given by β = tanhψ.
We can give the explicit form of the Minkowski four-
vectors u1 = p1/m and u2 = p2/m in terms of the hy-
perbolic angle ψ:

u1 =
p1

m
= (coshψ, sinhψ,0t) ,

u2 =
p2

m
= (coshψ,− sinhψ,0t) . (2.5)

Clearly, u2
1 = u2

2 = 1 and

u1 · u2 = cosh(2ψ) = coshχ , (2.6)

where χ = 2ψ is the hyperbolic angle [in the plane (x0, x1)]
between the two trajectories of W1 and W2.

In an analogous way, we can consider the following
quantity, defined in Euclidean space-time:

gE(p1E , p2E ; t) =
E(p1E , p2E ; t)

Z2
WE

,

E(p1E , p2E ; t) =
∫
d2zteiq·zt (2.7)

×〈[W1E(ztE) − 1]ij [W2E(0) − 1]kl〉E ,

where ztE = (z1, z2, z3, z4) = (0, zt, 0) and qE = (0,q, 0)
(so that: q2E = q2 = −t). The expectation value 〈. . .〉E
must be intended now as a functional integration with
respect to the gauge variable A(E)

µ = A
(E)a
µ T a in the Eu-

clidean theory. The Euclidean four-vectors p1E and p2E
[lying (for example) in the plane (x1, x4)] define the tra-
jectories of the two Euclidean Wilson lines W1E and W2E :

W1E(ztE) ≡ P exp


−ig

+∞∫
−∞

A(E)
µ (ztE + p1Eτ)p1Eµdτ


 ;

W2E(0) ≡ P exp


−ig

+∞∫
−∞

A(E)
µ (p2Eτ)p2Eµdτ


 . (2.8)

ZWE in (2.7) is defined analogously to ZW in (2.3):

ZWE ≡ 1
Nc

〈Tr[W1E(ztE)]〉 =
1
Nc

〈Tr[W1E(0)]〉

=
1
Nc

〈Tr[W2E(0)]〉 . (2.9)

(The two last equalities come from the O(4) plus transla-
tion invariance.)

We can now use the definition of the path-ordered ex-
ponential in (2.2) to explicitly write the Wilson lines W1
and W2 as power series in the exponents g · A. There-
fore, the quantity M(p1, p2; t) is defined to be the series
M =

∑∞
n=1

∑∞
r=1M(n,r), where M(n,r) is the contribution

from the piece with (g · A)n in the expansion of W1 and

from the piece with (g · A)r in the expansion of W2; it is
given by:

M(n,r)(p1, p2; t)

= (−ig)(n+r)(T a1 . . . T an)ij(T b1 . . . T br )kl
∫
d2zteiq·zt

×
∫
dτ1

pµ1
1

m
. . .

∫
dτn

pµn

1

m

∫
dω1

pν12

m
. . .

∫
dωr

pνr
2

m

×θ(τn − τn−1) . . . θ(τ2 − τ1)θ(ωr − ωr−1) . . . θ(ω2 − ω1)

×〈Aa1
µ1

(zt +
p1

m
τ1) . . . Aan

µn
(zt +

p1

m
τn)Ab1ν1(

p2

m
ω1)

× . . . Abr
νr

(
p2

m
ωr)〉 . (2.10)

Analogously, the Euclidean quantity E(p1E , p2E ; t) is de-
fined to be the series E =

∑∞
n=1

∑∞
r=1E(n,r), where E(n,r)

is the contribution from the pieces with (g · A(E))n and
(g ·A(E))r in the expansions of the Euclidean Wilson lines
W1E and W2E respectively; it is given by:

E(n,r)(p1E , p2E ; t)

= (−ig)(n+r)(T a1 . . . T an)ij(T b1 . . . T br )kl
∫
d2zteiq·zt

×
∫
dτ1p

µ1
1E . . .

∫
dτnp

µn

1E

∫
dω1p

ν1
2E

. . .×
∫
dωrp

νr

2Eθ(τn − τn−1) . . . θ(τ2 − τ1)θ(ωr − ωr−1)

. . .× θ(ω2 − ω1)〈Aa1
(E)µ1

(ztE + p1Eτ1)

. . .×Aan

(E)µn
(ztE + p1Eτn)Ab1(E)ν1

(p2Eω1)

. . .×Abr

(E)νr
(p2Eωr)〉E . (2.11)

A short comment is necessary at this point. The coupling
constant g and the gauge field A in (2.10) and (2.11) [that
is, in (2.2) and (2.8)] are the unrenormalized (bare) ones.
One could equally well work with the renormalized quan-
tities gR and AR, using for example the background-field
gauge, where the unrenormalized product g ·A is equal to
the renormalized product gR · AR. Anyway, not to make
the notation heavier, we shall omit in what follows the
index “R” for the renormalized quantities.

It is known that, making use of the correspondence

A0(x) → iA
(E)
4 (xE) , Ak(x) → A

(E)
k (xE)

with : x0 → −ixE4 , x → xE , (2.12)

between the Minkowski and the Euclidean world, the fol-
lowing relationship is derived between the gluonic Green
functions in the two theories:

B̃µ1
(1) . . . B̃

µN

(N)〈Aa1
µ1

(x̃(1)) . . . AaN
µN

(x̃(N))〉
= B(1)Eµ1 . . . B(N)EµN

×〈Aa1
(E)µ1

(x(1)E) . . . AaN

(E)µN
(x(N)E)〉E , (2.13)

where x(i)E = (x(i)E , x(i)E4) are Euclidean four-coordi-
nates and B(i)E = (B(i)E , B(i)E4) are any Euclidean four-
vectors, while x̃(i) and B̃(i) are Minkowski four-vectors
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defined as

x̃(i) = (x̃0
(i), x̃(i)) = (−ix(i)E4,x(i)E) ,

B̃(i) = (B̃0
(i), B̃(i)) = (−iB(i)E4,B(i)E) . (2.14)

For example, in the case N = 2, if one defines the gluonic
propagators as

Gabµν(x, y) ≡ 〈Aaµ(x)Abν(y)〉 ,
Gab(E)µν(xE , yE) ≡ 〈Aa(E)µ(xE)Ab(E)ν(yE)〉E , (2.15)

one finds that

Gab00(x̃, ỹ) = −Gab(E)44(xE , yE) ,

Gab0j(x̃, ỹ) = iGab(E)4j(xE , yE) ,

Gabj0(x̃, ỹ) = iGab(E)j4(xE , yE) ,

Gabjk(x̃, ỹ) = Gab(E)jk(xE , yE) , (2.16)

where j, k = 1, 2, 3 are indices for the spatial components
and x̃ and ỹ are defined as in (2.14). From these relations,
one immediately derives (2.13) for N = 2, with B̃ defined
as in (2.14). The result can be trivially generalized to every
N .

In our specific case, we can use (2.13) to state that

p̃µ1
1

m
. . .

p̃µn

1

m

p̃ν12

m
. . .

p̃νr
2

m
〈Aa1

µ1
(zt +

p̃1

m
τ1) . . .

. . .×Aan
µn

(zt +
p̃1

m
τn)Ab1ν1(

p̃2

m
ω1) . . . Abr

νr
(
p̃2

m
ωr)〉

=
pµ1
1E

m
. . .

pµn

1E

m

pν12E

m
. . .

pνr

2E

m

×〈Aa1
(E)µ1

(ztE +
p1E

m
τ1) . . . Aan

(E)µn
(ztE +

p1E

m
τn)

×Ab1(E)ν1
(
p2E

m
ω1) . . . Abr

(E)νr
(
p2E

m
ωr)〉E , (2.17)

where piE = (piE , piE4), for i = 1, 2, are two Euclidean
four-vectors and p̃i are the two corresponding Minkowski
four-vectors, obtained according to (2.14):

p̃i = (p̃0
i , p̃i) = (−ipiE4,piE) . (2.18)

By virtue of the definitions (2.10) and (2.11) for M(n,r)
and E(n,r) respectively, (2.17) implies that:

E(n,r)(
p1E

m
,
p2E

m
; t) = M(n,r)(p̃1, p̃2; t) . (2.19)

This relation is valid for every couple of integer numbers
(n, r), so that, more generally,

∑∞
n=1

∑∞
r=1E(n,r)(p1E/m,

p2E/m; t) =
∑∞
n=1

∑∞
r=1M(n,r)(p̃1, p̃2; t); and therefore,

by definition:

E(
p1E

m
,
p2E

m
; t) = M(p̃1, p̃2; t) . (2.20)

Of course M , considered as a general function of p1, p2
[and q = (0, 0,q)], can only depend on the scalar quanti-
ties constructed with the vectors p1, p2 and q = (0, 0,q):

the only possibilities are q2 = −q2 = t, p1 · p2, p2
1 and

p2
2, since p1 · q = p2 · q = 0. Moreover, it is clear from the

definitions (2.1) and (2.2) that M cannot depend on the
(positive) normalizations of the four-vectors p1 and p2: in
other words, we obtain the same result for M if we substi-
tute (p1, p2) with (α1p1, α2p2), α1 and α2 being arbitrary
positive constants.

Therefore, M is forced to have the following form:

M(p1, p2; t) = fM

(
p1√
p2
1

· p2√
p2
2

; t

)
. (2.21)

For analogous reasons, E must be of the form:

E(p1E , p2E ; t) = fE

(
p1E

|p1E | · p2E

|p2E | ; t
)
, (2.22)

where |BE | ≡
√∑4

µ=1B
2
Eµ is the Euclidean norm. (A

short remark about the notation: we have denoted every-
where the scalar product by a “·”, both in the Minkowski
and the Euclidean world. Of course, when A and B are
Minkowski four-vectors, then A ·B = AµBµ = A0B0 −A ·
B; while, if AE and BE are Euclidean four-vectors, then
AE ·BE = AEµBEµ = AE ·BE+AE4BE4.) Therefore, the
relation (2.20) can be re-formulated as follows [observing
that (piE/m)/|(piE/m)| = piE/|piE |]

fE(v1E · v2E ; t) = fM (ū1 · ū2; t) , (2.23)

where v1E and v2E are the Euclidean four-versors corre-
sponding to p1E and p2E (v2

1E = v2
2E = 1):

v1E =
p1E

|p1E | , v2E =
p2E

|p2E | , (2.24)

while ū1 and ū2 are the Minkowski four-vectors defined as

ū1 =
p̃1√
p̃2
1

, ū2 =
p̃2√
p̃2
2

. (2.25)

(It is clear that: ū2
1 = ū2

2 = 1.) By virtue of the O(4) sym-
metry of the Euclidean theory, we can choose a reference
frame in which the spatial vectors v1E and v2E = −v1E
are along the x1-direction. The two four-momenta v1E and
v2E are, therefore,

v1E = (sinφ,0t, cosφ) ;
v2E = (− sinφ,0t, cosφ) , (2.26)

where φ is the angle formed by each trajectory with the
x4-axis. The value of φ is between 0 and π/2, so that the
angle θ = 2φ between the two Euclidean trajectories W1E
and W2E lies in the range [0, π]: it is always possible to
make such a choice by virtue of the O(4) symmetry of the
Euclidean theory. In such a reference frame, we can write
v1E · v2E = cos θ.

From (2.18) we have that p̃2
i = −|piE |2 < 0 and

√
p̃2
i =

−i|piE |. The sign of the squared root is fixed in the fol-
lowing way: in the system where pi = 0, we have that



E. Meggiolaro: The analytic continuation of the high-energy quark-quark scattering amplitude 105

√
p2
i = p0

i (if we take p0
i > 0). This relation is contin-

ued so to have
√
p̃2
i = p̃0

i in the system where p̃i = 0.
But p̃i = piE = 0, so that p̃0

i = −ipiE4 = −i|piE | (if
we take piE4 > 0). Therefore, in this particular system√
p̃2 = p̃0 = −ipiE4 = −i|piE |. So we take

√
p̃2 = −i|piE |

in every system. This implies that:

ūi =
p̃i√
p̃2
i

= (viE4, iviE) . (2.27)

With the explicit form of v1E and v2E given by (2.26), we
find that

ū1 = (cosφ, i sinφ,0t) ,
ū2 = (cosφ,−i sinφ,0t) , (2.28)

and consequently ū2
1 = ū2

2 = 1 and

ū1 · ū2 = cos(2φ) = cos θ . (2.29)

A comparison with the expressions (2.5) for the Minkowski
four-vectors u1 and u2 reveals that ū1 and ū2 are obtained
from u1 and u2 after the following analytic continuation
in the angular variables is made:

χ → iθ . (2.30)

(We remind that φ = θ/2 and ψ = χ/2.) Therefore, by
virtue of (2.21) and (2.22), the relation (2.23) can be for-
mulated as follows:

E(θ; t) = M(χ → iθ; t) . (2.31)

Let us consider, now, the Wilson-line’s renormalization
constant ZW :

ZW ≡ 1
Nc

〈Tr[W1(0)]〉 . (2.32)

Again, we can use the definition of the path-ordered expo-
nential in (2.2) to expand the Wilson line W1(0) in powers
of the exponent g ·A. The quantity ZW is thus defined to
be the series ZW =

∑∞
n=1 Z

(n)
W , where Z(n)

W is the contri-
bution from the piece with (g · A)n in the expansion of
W1(0); it is given by:

Z
(n)
W =

(−ig)n
Nc

Tr(T a1 . . . T an)

×
∫
dτ1

pµ1
1

m
. . .

∫
dτn

pµn

1

m

×θ(τn − τn−1) . . . θ(τ2 − τ1)

×〈Aa1
µ1

(
p1

m
τ1) . . . Aan

µn
(
p1

m
τn)〉 . (2.33)

In the Euclidean theory we have, analogously:

ZWE ≡ 1
Nc

〈Tr[W1E(0)]〉E , (2.34)

and ZWE =
∑∞
n=1 Z

(n)
WE , with

Z
(n)
WE =

(−ig)n
Nc

Tr(T a1 . . . T an)
∫
dτ1p

µ1
1E . . .

∫
dτnp

µn

1E

×θ(τn − τn−1) . . . θ(τ2 − τ1)
×〈Aa1

(E)µ1
(p1Eτ1) . . . Aan

(E)µn
(p1Eτn)〉E . (2.35)

Using (2.13), we can derive the following relation:

p̃µ1
1

m
. . .

p̃µn

1

m
〈Aa1

µ1
(
p̃1

m
τ1) . . . Aan

µn
(
p̃1

m
τn)〉

=
pµ1
1E

m
. . .

pµn

1E

m

×〈Aa1
(E)µ1

(
p1E

m
τ1) . . . Aan

(E)µn
(
p1E

m
τn)〉E , (2.36)

where, as usual, p1E = (p1E , p1E4) and p̃1 = (p̃0
1, p̃1) =

(−ip1E4,p1E). If we define

ZW ≡ hM (p1) , Z
(n)
W = h

(n)
M (p1) ,

ZWE ≡ hE(p1E) , Z(n)
WE = h

(n)
E (p1E) , (2.37)

from (2.36) we obtain

h
(n)
E (

p1E

m
) = h

(n)
M (p̃1) . (2.38)

This relation is valid for every integer number n, so that we
also have, more generally,

∑∞
n=1 h

(n)
E (p1E/m) =

∑∞
n=1 h

(n)
M

(p̃1); and therefore, by definition:

hE(
p1E

m
) = hM (p̃1) . (2.39)

From the definitions (2.32) and (2.2), hM (p1), considered
as a function of a general four-vector p1, is a scalar func-
tion constructed with the only four-vector p1. In addition,
hM (p1) does not depend on the (positive) normalization of
p1: in other words, hM (αp1) = hM (p1) for every positive
α. Therefore, hM (p1) is forced to have the form

hM (p1) = HM (u2
1) = HM (1) , (2.40)

where u1 = p1/
√
p2
1 (u2

1 = 1). In a perfectly analogous
way, for the Euclidean case we have that:

hE(p1E) = HE(v2
1E) = HE(1) , (2.41)

where v1E = p1E/|p1E | (v2
1E = 1). Therefore, the first

member of (2.39) is just equal to hE(p1E/m) = HE(v2
1E)

= HE(1) [observing that (p1E/m)/|(p1E/m)| = p1E/|p1E |],
and the second member is given by hM (p̃1) = HM (ū2

1) =
HM (1), where ū1 = p̃1/

√
p̃2
1 (ū2

1 = 1). Then (2.39) implies
that

HE(1) = HM (1) . (2.42)

That is, from (2.37), (2.40) and (2.41):

ZWE = ZW . (2.43)

Combining this identity with (2.31), we find the following
relation between the amplitudes gM (χ; t) = M(χ; t)/Z2

W
and gE(θ; t) = E(θ; t)/Z2

WE :

gM (χ; t) −→
χ→iθ

gM (iθ; t) = gE(θ; t) ;

or : gE(θ; t) −→
θ→−iχ

gE(−iχ; t) = gM (χ; t) . (2.44)

We have derived the relation (2.44) of analytic continu-
ation for a non-Abelian gauge theory with gauge group
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SU(Nc). It is clear, from the derivation given above, that
the same result is valid also for an Abelian gauge theory
(QED). We have thus completely generalized the results
of [4], where the same relation (2.44) had been proven for
an Abelian gauge theory (QED) in the so-called quenched
approximation and for a non-Abelian gauge theory (QCD)
up to the fourth order in the renormalized coupling con-
stant in perturbation theory. The approach adopted in [4]
consisted in explicitly evaluating the amplitudes gM (χ; t)
and gE(θ; t), in the Minkowski and the Euclidean world, in
some given approximation (such as the quenched approx-
imation) or up to some order in perturbation theory and
in finally comparing the two expressions so obtained. In-
stead, in this paper we have given a general proof of (2.44),
which essentially exploits the relation (2.13) between the
gluonic Green functions in the two theories.

Therefore, it is possible to reconstruct the high-energy
scattering amplitude by evaluating a correlation of two in-
finite Wilson lines forming a certain angle θ in Euclidean
four-space, then by continuing this quantity in the angu-
lar variable, θ → −iχ, where χ is the hyperbolic angle
between the two Wilson lines in Minkowski space-time,
and finally by performing the limit χ → ∞ (i.e., β → 1).
In fact, the high-energy scattering amplitude is given by

Mfi = 〈ψiα(p′
1)ψkγ(p

′
2)|M |ψjβ(p1)ψlδ(p2)〉

∼
s→∞ −i · 2s · δαβδγδ · gM (χ → ∞; t) . (2.45)

The quantity gM (χ; t), defined by (2.1) in the Minkowski
world, is linked to the corresponding quantity gE(θ; t), de-
fined by (2.7) in the Euclidean world, by the analytic con-
tinuation (2.44) in the angular variables. The important
thing to note here is that the quantity gE(θ; t), defined
in the Euclidean world, may be computed non perturba-
tively by well-known and well-established techniques, for
example by means of the formulation of the theory on the
lattice. In all cases, once one has obtained the quantity
gE(θ; t), one still has to perform an analytic continuation
in the angular variable θ → −iχ, and finally one has to
extrapolate to the limit χ → ∞ (i.e., β → 1). For deriving
the dependence on s one exploits the fact that both β and
ψ (or equivalently χ) are dependent on s. In fact, from
E = m/

√
1 − β2 and from s = 4E2, one immediately

finds that

β =

√
1 − 4m2

s
. (2.46)

By inverting this equation and using the relation β =
tanhψ, we derive:

s = 4m2 cosh2 ψ = 2m2(coshχ+ 1) . (2.47)

Therefore, in the high-energy limit s → ∞ (or β → 1),
the hyperbolic angle χ = 2ψ is essentially equal to the
logarithm of s (for a finite non-zero quark mass m):

χ = 2ψ ∼
s→∞ ln s . (2.48)

As an example, we have shown in [4] how, using this ap-
proach, one can re-derive the well-known Regge Pole Model
[11]. Of course, the most interesting results are expected
from an exact non perturbative approach, for example by
directly computing gE(θ; t) on the lattice: a considerable
progress could be achieved along this direction in the near
future.
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